632 research outputs found

    Security in Ad-Hoc Routing Protocols

    Full text link
    Mobile Ad-Hoc Networks (MANETs) are becoming increasingly popular as more and more mobile devices find their way to the public, besides traditional" uses such as military battlefields and disaster situations they are being used more and more in every-day situations. With this increased usage comes the need for making the networks secure as well as efficient, something that is not easily done as many of the demands of network security conflicts with the demands on mobile networks due to the nature of the mobile devices (e.g. low power consumption, low processing load). The concept and structure of MANETs make them prone to be easily attacked using several techniques often used against wired networks as well as new methods particular to MANETs. Security issues arise in many different areas including physical security, key management, routing and intrusion detection, many of which are vital to a functional MANET. In this paper we focus on the security issues related to ad hoc routing protocols in particular. The routing in ad hoc networks remains a key issue since without properly functioning routing protocols, the network simply will not work the way it's intended to. Unfortunately, routing may also be one of the most difficult areas to protect against attacks because of the ad hoc nature of MANETs. We will present the main security risks involved in ad-hoc routing as well as the solutions to these problems that are available today.

    Simulation of the cytoskeletal response of cells on grooved or patterned substrates.

    Get PDF
    We analyse the response of osteoblasts on grooved substrates via a model that accounts for the cooperative feedback between intracellular signalling, focal adhesion development and stress fibre contractility. The grooved substrate is modelled as a pattern of alternating strips on which the cell can adhere and strips on which adhesion is inhibited. The coupled modelling scheme is shown to capture some key experimental observations including (i) the observation that osteoblasts orient themselves randomly on substrates with groove pitches less than about 150 nm but they align themselves with the direction of the grooves on substrates with larger pitches and (ii) actin fibres bridge over the grooves on substrates with groove pitches less than about 150 nm but form a network of fibres aligned with the ridges, with nearly no fibres across the grooves, for substrates with groove pitches greater than about 300 nm. Using the model, we demonstrate that the degree of bridging of the stress fibres across the grooves, and consequently the cell orientation, is governed by the diffusion of signalling proteins activated at the focal adhesion sites on the ridges. For large groove pitches, the signalling proteins are dephosphorylated before they can reach the regions of the cell above the grooves and hence stress fibres cannot form in those parts of the cell. On the other hand, the stress fibre activation signal diffuses to a reasonably spatially homogeneous level on substrates with small groove pitches and hence stable stress fibres develop across the grooves in these cases. The model thus rationalizes the responsiveness of osteoblasts to the topography of substrates based on the complex feedback involving focal adhesion formation on the ridges, the triggering of signalling pathways by these adhesions and the activation of stress fibre networks by these signals.A.V. and V.S.D. acknowledge the Royal Society for supporting A.V. through a Newton International Fellowship.This is the accepted manuscript of a paper published in the Journal of the Royal Society Interface (Vigliotti A, McMeeking RM, Deshpande VS, J. R. Soc. Interface 2015, 12, 20141320, doi:10.1098/rsif.2014.1320). The final version is available at http://dx.doi.org/10.1098/rsif.2014.1320

    Multi-axial response of idealized cermets

    Get PDF
    The yield response of two idealized cermets comprising mono and bi-disperse steel spheres in a Sn/Pb solder matrix has been investigated for a range of axisymmetric stress states. Proportional stress path experiments are reported, from which are extracted the initial yield surfaces and their evolution with increasing plastic strain. The initial yield strength is nearly independent of the hydrostatic pressure but the strain hardening rate increases with stress triaxiality up to a critical value. For higher triaxialities, the responses are independent of hydrostatic pressure. Multi-axial measurements along with X-ray tomography were used to demonstrate that the deformation of these idealized cermets occurs by two competing mechanisms: (i) a granular flow mechanism that operates at low levels of triaxiality, where volumetric dilation occurs under compressive stress states, and (ii) a plastically incompressible mechanism that operates at high stress triaxialities. A phenomenological viscoplastic constitutive model that incorporates both deformation mechanisms is presented. While such multi-axial measurements are difficult for commercial cermets with yield strengths on the order of a few GPa, the form of their constitutive relation is expected to be similar to that of the idealized cermets presented here

    Finite versus small strain discrete dislocation analysis of cantilever bending of single crystals

    Get PDF
    © 2017, The Author(s). Plastic size effects in single crystals are investigated by using finite strain and small strain discrete dislocation plasticity to analyse the response of cantilever beam specimens. Crystals with both one and two active slip systems are analysed, as well as specimens with different beam aspect ratios. Over the range of specimen sizes analysed here, the bending stress versus applied tip displacement response has a strong hardening plastic component. This hardening rate increases with decreasing specimen size. The hardening rates are slightly lower when the finite strain discrete dislocation plasticity (DDP) formulation is employed as curving of the slip planes is accounted for in the finite strain formulation. This relaxes the back-stresses in the dislocation pile-ups and thereby reduces the hardening rate. Our calculations show that in line with the pure bending case, the bending stress in cantilever bending displays a plastic size dependence. However, unlike pure bending, the bending flow strength of the larger aspect ratio cantilever beams is appreciably smaller. This is attributed to the fact that for the same applied bending stress, longer beams have lower shear forces acting upon them and this results in a lower density of statistically stored dislocations
    • …
    corecore